2023年178中文源的源地址,好哇网为您提供2023年最新178中文源的源地址,178中文源的源地址(178中文源添加不了)等信息,178中文源添加不了资讯,帮您及时掌握最新资讯动态。
原创 Olivia J. Chu等 集智俱乐部
导语
俄乌局势尚在发酵之中,认知战争早已悄然展开。民众政治观点趋向两极分化的背后,既有复杂社会系统的演化特征,也暗含多方力量的主动干涉。2022年12月发表在《美国国家科学院院刊》(PNAS)的一篇论文,以乌克兰2012-2022年间民众对欧盟态度(签署协议参与欧洲一体化,逐步加入欧盟)的数据为参考,讨论了自适应选民模型(AVM)对于社会政治观点极化的预测能力,以及本地化、局部化的政治讨论对于塑造个人观点的重要性。
该文由分别来自普林斯顿大学公共和国际事务学院、德国波茨坦气候影响研究所地球系统分析所、北卡罗来纳大学教堂山分校政治科学系、达特茅斯学院计算科学数学系的跨学科团队完成。该研究对于理解不同地域、不同社会圈层、不同互联网社区的意见观点分歧加剧,有启发意义,同时该模型具有一定的应用价值。以下是对论文主要内容的翻译。
研究领域:自适应选民模型,空间极化
Olivia J. Chu、Jonathan F. Donges、Graeme B. Robertson、Grigore Pop-Eleches | 作者
刘培源 | 译者
梁金 | 审校
邓一雪 | 编辑
论文题目:
The microdynamics of spatial polarization: A model and an application to survey data from Ukraine
论文地址:
https://www.pnas.org/doi/10.1073/pnas.2104194118
目录
1. 意义与摘要
2. 简述
3. 理论部分
4. 数据和背景
5. 模型
6. 结果
7. 讨论与下一步
1. 意义与摘要
在这项研究中,我们通过强调社会互动的性质和结构如何塑造态度两极分化的变化,推进了对两极分化随时间和跨空间变化的理解。我们展示了在自适应选民模型中包含地理信息,如何提高其对个人层面态度变化和空间极化聚合模式的预测准确性。通过将该模型应用于乌克兰的跟踪调查(panel survey)数据,我们解决了基于主体(agents)建模文献中缺乏真实世界数据的经验应用的问题。本文还论证了一个早期关键机制的重要性,即局部效应在塑造个人态度方面的重要性,亦即政治讨论在本地根深蒂固的网络中的作用。
虽然世界各地民众态度的空间极化(不同态度的分布与地理分布相关)非常普遍,但我们对分歧问题上的两极分化随着时间推移而上升和下降的机制了解甚少。我们发展了一个理论,解释了政治冲击如何在一个国家的不同地区产生不同的影响——这取决于其局部动力学机制(local dynamics),而动力学由先前存在的态度和讨论网络(discussion networks,如线下社交等)的空间分布所产生。在以前意见分歧的地方,受冲击之后,态度的多样性可能会持续下去。与此同时,如果危机前在关键问题上存在明显的多数意见,人们的观点应该朝着主流观点的方向转变。这些动态因素导致当地的态度更趋一致,但同时也加剧了不同区域之间、有时甚至区域内部的地理极化。
为了说明我们的理论,我们开发了一个修订版的自适应选民模型(adaptive voter model,AVM),这是一个自适应的观点动力学网络模型,用来研究在2013年至2014年亲欧示威运动背景下乌克兰对欧盟态度的变化。利用独立广场革命(Euromaidan Revolution ,即乌克兰亲欧盟示威运动)前后调查的个体级别跟踪调查数据,我们表明,在公众先前支持欧洲一体化(即乌克兰加入欧盟)的地区,欧盟的支持有所增加,但在最初公众反对加入欧盟的地区,支持进一步下降,从而加剧了乌克兰境内欧盟态度的空间分化。当我们在模型中加入网络参与者的地理位置信息时,结果显示,AVM 和回归模型的预测能力显著增强,这突出了根植于空间的社会网络的重要性。
译注:Euromaidan Revolution,独立广场革命,始于2013年11月21日基辅独立广场的公开示威,持续至2014年2月乌克兰总统亚努科维奇被议会解职。起因是亚努科维奇中止与欧盟签署政治和自由贸易协议,并强化与俄罗斯关系。中文媒体还称之为“乌克兰亲欧盟示”、“乌克兰反政府示威”、“乌克兰之乱”、“广场革命”等。
2. 简述
空间两极分化是全球政治两极分化的一个关键因素,但对于重要问题的态度如何在空间中munism (Oxford University Press, 2022).
C. Pattie, R. Johnston, ‘People who talk together vote together’: An exploration of contextual effects in Great Britain. Ann. Assoc. Am. Geogr. 90, 41–66 (2000).
J. Bello, M. Rolfe, Is influence mightier than selection? Forging agreement in political discussion networks during a campaign. Soc. Networks 36, 134–146 (2014).
H. G. Boomgaarden, A. R. Schuck, M. Elebaas, C. H. De Vreese, Mapping EU attitudes: Conceptual and empirical dimensions of Euroscepticism and EU support. Eur. Union Polit. 12, 241–266 (2011).
G. Martin, S. Webster, Does residential sorting explain geographic polarization? Political Sci. Res. Methods 8, 215–231 (2022).
R. Maxwell, Geographic divides and cosmopolitanism: Evidence from Switzerland. Comp. Polit. Stud. 53, 2061–2090 (2022).
J. Mummolo, C. Nall, Why partisans do not sort: The constraints on political segregation. J. Polit. 79, 45–59 (2022).
G. C. Layman, T. M. Carsey, J. M. Horowitz, Party polarization in American politics: Characteristics, causes, and consequences. Annu. Rev. Polit. Sci. 9, 83–110 (2006).
J. R. Brown, R. D. Enos, The measurement of partisan sorting for 180 million voters. Nat. Hum. Behav. 5, 998–1008 (2022).
S. Iyengar, Y. Lelkes, M. Levendusky, N. Malhotra, S. J. Westwood, The origins and consequences of affective polarization in the United States. Annu. Rev. Polit. Sci. 22, 129–146 (2022).
M. R. Beissinger, Nationalist Mobilization and the Collapse of the Soviet State (Cambridge University Press, 2002).
J. M. Oller, A. Satorra, A. Tobe?a, Unveiling pathways for the fissure among secessionists and unionists in Catalonia: Identities, family language, and media influence. Palgrave Commun. 5, 148 (2022).
M. MacKuen, C. Brown, Political context and attitude change. Am. Polit. Sci. Rev. 81, 471–490 (1987).
D. Baldassarri, P. Bearman, Dynamics of political polarization. Am. Sociol. Rev. 72, 784–811 (2007).
L. Patterson, Education and opportunity: Is the UK departing from a common tradition? Journal of the British Academy 2, 101–123 (2014).
B. Berelson, P. Lazarsfeld, W. McPhee, Voting: A Study of Opinion Formation in a Presidential Campaign (University of Chicago Press, 1954).
J. Lyons, Where you live and who you know: Political environments, social pressures, and partisan stability. Am. Polit. Res. 39, 963–992 (2011).
A. Kalogeropoulos, D. N. Hopmann, Interpersonal discussions and immigration attitudes. Communications 44, 185–203 (2022).
T. Rodon, M. Guinjoan, When the context matters: Identity, secession and the spatial dimension in Catalonia. Polit. Geogr. 63, 75–87 (2022).
O. Onuch, G. Sasse, The Maidan in movement: Diversity and the cycles of protest. Eur. Asia Stud. 68, 556–587 (2022).
A. Ryabchuk, Right revolution? Hopes and perils of the Euromaidan protests inUkraine.Debatte22, 127–134 (2014).
G. Pop-Eleches, G. B. Robertson, B. Rosenfeld, Protest participation and attitudechange: Evidence from Ukraine’s Euromaidan Revolution.J. Polit.
E. Giuliano, Who supported separatism in Donbas? Ethnicity and popular opinion atthe start of the Ukraine crisis.Post Sov. Aff.34, 158–178 (2022).
O. Shevel, Attitudinal geography in post-Euromaidan Ukraine: Divided, re-divided,or divided no more?APSA Comp. Politics Newslett.25,38–40 (2022).
G. Pop-Eleches, G. B. Robertson, Identity and political preferences in Ukraine–beforeand after the Euromaidan.Post Sov. Aff.34, 107–118 (2022).
A. Flacheet al., Models of social influence: Towards the next frontiers.J. Artif. Soc.Soc. Simul.20,1–31 (2022).
P. Holme, M. E. J. Newman, Nonequilibrium phase transition in the coevolution ofnetworks and opinions.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74, 056108 (2006).
T. Gross, B. Blasius, Adaptive coevolutionary networks: A review.J. R. Soc. Interface5,259–271 (2008).
T. A. Snijders, G. G. Van de Bunt, C. E. Steglich, Introduction to stochastic actor-basedmodels for network dynamics.Soc. Netw.32,44–60 (2010).
H. Sayamaet al., Modeling complex systems with adaptive networks.Comput. Math.Appl.65, 1645–1664 (2013).
D. Acemoglu, A. Ozdaglar, Opinion dynamics and learning in social networks.Dyn.Games Appl.1,3–49 (2011).
M.Conoveret al.,“PoliticalpolarizationonTwitter”inProceedings of the InternationalAAAI Conference on Web and Social Media(AAAI Publications, Palo Alto, CA, 2011),pp. 89–96.
M. E. J. Newman, The structure and function of complex networks.SIAM Rev.45,167–256 (2003).
M. Maes, L. Bischofberger, Will the personalization of online social networks fosteropinion polarization? SSRN Preprint. 10.2139/ssrn.2553436 (Accessed 21October 2022).
S. Banisch, E. Olbrich, Opinion polarization by learning from social feedback.J. Math.Sociol.43,76–103 (2022).
F. Baumann, P. Lorenz-Spreen, I. M. Sokolov, M. Starnini, Modeling echo chambersand polarization dynamics in social networks.Phys. Rev. Lett.124, 048301 (2022).
M. Wiedermann, J. F. Donges, J. Kurths, R. V. Donner, Spatial network surrogates fordisentangling complex system structure from spatial embedding of nodes.Phys. Rev.E93, 042308 (2022).
L. Barrington, Examining rival theories of demographic influences on political sup-port: The power of regional, ethnic, and linguistic divisions in Ukraine.Eur. J. Polit.Res.41, 455–491 (2002).
I. Katchanovski, Regional political divisions in Ukraine in 1991-2006.Natl. Pap.34,507–532 (2006).
L. Peisakhin,“Long-run persistence of political attitudes and behavior: A focus onmechanisms”in Conference on Historical Legacies and Contemporary Politics,Juan March Institute, Madrid, June. Vol. 1415. (2013).
G. Sasse, The ‘new’ Ukraine: A state of regions.Regional & Federal Studies11,69–100(2001).
P. P. Klamser, M. Wiedermann, J. F. Donges, R. V. Donner, Zealotry effects on opiniondynamics in the adaptive voter model.Phys. Rev. E96, 052315 (2022).
J. Golbeck,Analyzing the Social Web(Morgan Kaufmann, 2013).
J. M. Kleinberg, Navigation in a small world.Nature406, 845 (2000).
D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel.Nature439,462–465 (2006).
E. Deutschmann, The spatial structure of transnational human activity.Soc. Sci. Res.59, 120–136 (2022).
L. Backstrom, P. Boldi, M. Rosa, J. Ugander, S. Vigna,“Four degrees of separation”inProceedings of the 4th Annual ACM Web Science Conference(WebSci, 2012), pp.33–42.
P. Bri~nol, D. D. Rucker, R. E. Petty, Na?ve theories about persuasion: Implications forinformation processing and consumer attitude change.Int. J. Advert. Rev. Market.Commun.34,85–106 (2022).
M. M€as, A. Flache, Differentiation without distancing. Explaining bi-polarization ofopinions without negative influence.PLoS One8, e74516 (2013).
S. B. Hobolt, C. E. de Vries, Public support for European integration.Annu. Rev. Polit.Sci.19, 413–432 (2022).
O. J. Chu, J. F. Donges, G. B. Robertson, G. Pop-Eleches, Code for“The micro-dynamicsof spatial polarization: A model and an application to survey data from Ukraine.”GitHub. https://github.com/oliviachu/ukraine-polarization. Deposited 9 November2022.
O. J. Chu, J. F. Donges, G. B. Robertson, G. Pop-Eleches, Replication Data for“Themicro-dynamics of spatial polarization: A model and an application to survey datafro
计算社会科学读书会第二季
计算社会科学作为一个新兴交叉领域,越来越多地在应对新冠疫情、舆论传播、社会治理、城市发展、组织管理等社会问题和社科议题中发挥作用,大大丰富了我们对社会经济复杂系统的理解。相比于传统社会科学研究,计算社会科学广泛采用了计算范式和复杂系统视角,因而与计算机仿真、大数据、人工智能、统计物理等领域的前沿方法密切结合。为了进一步梳理计算社会科学中的各类模型方法,推动研究创新,集智俱乐部发起了计算社会科学系列读书会。
详情请见:
原标题:《政治观点空间极化的微观动力学:乌克兰调查数据的模型和应用》
以上就是178中文源的源地址(178中文源添加不了)全部内容,希望对您能够有所帮助,数据由网络提供,仅供读阅,所有信息请自行甄别,风险自担。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台用户上传并发布,不构成投资建议请自行甄别,如有侵权请联系删除:liaycn@163.com
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of the site, which is a social media platform and only provides information storage services.